Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 10582, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011994

RESUMO

Entomopathogenic fungi show great promise as pesticides in terms of their relatively high target specificity, low non-target toxicity, and low residual effects in agricultural fields and the environment. However, they also frequently have characteristics that limit their use, especially concerning tolerances to temperature, ultraviolet radiation, or other abiotic factors. The devastating ectoparasite of honey bees, Varroa destructor, is susceptible to entomopathogenic fungi, but the relatively warm temperatures inside honey bee hives have prevented these fungi from becoming effective control measures. Using a combination of traditional selection and directed evolution techniques developed for this system, new strains of Metarhizium brunneum were created that survived, germinated, and grew better at bee hive temperatures (35 °C). Field tests with full-sized honey bee colonies confirmed that the new strain JH1078 is more virulent against Varroa mites and controls the pest comparable to current treatments. These results indicate that entomopathogenic fungi are evolutionarily labile and capable of playing a larger role in modern pest management practices.


Assuntos
Abelhas/parasitologia , Evolução Biológica , Metarhizium/fisiologia , Controle Biológico de Vetores , Varroidae , Animais , Criação de Abelhas
2.
Sci Rep ; 8(1): 13936, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287824

RESUMO

Waves of highly infectious viruses sweeping through global honey bee populations have contributed to recent declines in honey bee health. Bees have been observed foraging on mushroom mycelium, suggesting that they may be deriving medicinal or nutritional value from fungi. Fungi are known to produce a wide array of chemicals with antimicrobial activity, including compounds active against bacteria, other fungi, or viruses. We tested extracts from the mycelium of multiple polypore fungal species known to have antiviral properties. Extracts from amadou (Fomes) and reishi (Ganoderma) fungi reduced the levels of honey bee deformed wing virus (DWV) and Lake Sinai virus (LSV) in a dose-dependent manner. In field trials, colonies fed Ganoderma resinaceum extract exhibited a 79-fold reduction in DWV and a 45,000-fold reduction in LSV compared to control colonies. These findings indicate honey bees may gain health benefits from fungi and their antimicrobial compounds.


Assuntos
Abelhas/efeitos dos fármacos , Colapso da Colônia/prevenção & controle , Coriolaceae/química , Ganoderma/química , Vírus de Insetos/isolamento & purificação , Micélio/química , Extratos Vegetais/farmacologia , Vírus de RNA/isolamento & purificação , Varroidae/virologia , Administração Oral , Animais , Abelhas/parasitologia , Abelhas/virologia , Coriolaceae/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Feminino , Ganoderma/crescimento & desenvolvimento , Extratos Vegetais/administração & dosagem , Extratos Vegetais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...